7 Referências

- 1 JONG, S. A Study of Shape from X by Imaging System Parameters. **Tese de Doutorado**, Chung Yuan Christian University, Departamento de Engenharia Mecânica, 2000.
- 2 HANSEN, C.; AYACHE, N.; LUSTMAN, F. Towards Real-Time Trinocular Stereo. Proceedings of 2nd International Conference on Computer Vision. p. 129-133, 1988.
- 3 HORN, B. K. P. Shape from Shading: A Method for Obtaining the Shape of s Smooth Opaque Object from One View. **Technical Report**, AI-TR-232, MIT, 1970.
- 4 WOODHAM, R. J. Photometric Method for Determining Surface Orientation from Multiple Images. **Optical Engineering.** Vol. 19, p. 139-144, 1980.
- 5 CLARK, J. J. Active Photometric Stereo. **IEEE Proceedings of Computer Vision and Pattern Recognition (CVPR)**, p. 29-34, 1992.
- 6 TOMASI, C.; KANADE, T. Shape and Motion from Image Streams: a Factorization Method (Full Report on the Orthographic Case). **Technical Report**, CMU-CS-91-132, Carnegie Mellon University, 1991.
- 7 NAYAR, S.K.; NAKAGAWA, Y. Shape from Focus, **IEEE Transactions on Pattern Analysis and Machine Intelligence**, vol. 16, no. 8, p. 824-831, Aug., 1994.
- 8 JARVIS, R. A. A perspective on Range Finding Techniques for Computer Vision. **IEEE Transactions on Pattern Analysis and Machine Intelligence.** Vol. 5, p. 122-139, 1983.
- 9 BANNO, A.; IKEUCHI, K. Shape Recovery of 3D Data Obtained from a Moving Range Sensor by Using Image Sequences. IEEE International Conference on Computer Vision, Vol. 1, p. 792-799, 2005.
- 10 GIBSON, J. The Perception of the Visual World. Boston: Houghton Mifflin, 1950.
- 11 BAJCSY, R.; LIEBERMAN, L. Texture gradient as a depth cue. Computer Graphics and Image Processing. Vol. 5, p. 52-67, 1976.
- 12 VAN VLIET, L. J. **Windowed Fourier Transform**. Disponível em <<u>http://www.ph.tn.tudelft.nl/~lucas/education/tn254/index.html</u>>. Acesso em 10 Nov. 2005.
- 13 STEVENS, K. A. The information content of texture gradients. **Biological Cybernetics**, Vol. 42, p. 95-105, 1981.

- 14 WITKIN, A. P. Recovering surface shape and orientation from texture. Artificial Intelligence. Vol. 17, p. 17-45, 1981.
- 15 ALOIMONOS, J. Shape from texture. **Biological Cybernetics**. Vol. 58, p. 345-360, 1988.
- 16 BLOSTEIN, D.; AHUJA, N. Shape from texture: integrating texture-element extraction and surface estimation. **IEEE Transactions on Pattern Analysis and Machine Intelligence**. Vol. 11, no. 12, p. 1233-1251, December 1989.
- 17 KENDER, J. R. Shape from texture: An aggregation transform that maps a class of textures into surface orientation. **In: IJCAI79**, p. 475-480, 1979.
- 18 OHTA, Y.; MAENOBU, K.; SAKAI, T. Obtaining surface orientation from texels under perspective projection. In: IJCAI81, p. 746-751, 1981.
- 19 IKEUCHI, K. Shape from regular patterns. Journal of Artificial Intelligence, Vol. 22, p. 49-75, 1984.
- 20 KANATANI, K. I.; CHOU, T. C. Shape from texture: General principle. Journal of Artificial Intelligence, Vol. 38, p. 1-48, February 1989.
- 21 DAVIS, L. S.; JANOS, L.; DUNN, S. M. Efficient recovery of shape from texture. **IEEE Transactions on Pattern Analysis and Machine Intelligence**, Vol. 5, 1983.
- 22 BLAKE, A.; MARINOS, C. Shape from texture estimation, isotropy and moments. Journal of Artificial Intelligence. Vol. 45, p. 323-380, 1990.
- 23 GARDING, J. Shape from texture and contour by weak isotropy. Journal of Artificial Intelligence, Vol. 64, p. 243–297, 1993.
- 24 BROWN, L. G.; SHVAYTSER, H. Surface orientation from projective foreshortening of isotropic texture autocorrelation. **IEEE Transactions on Pattern Analysis and Machine Intelligence**, Vol. 12, p. 584–588, 1990.
- 25 KRUMM, J.; SHAFER, S. A. A characterizable shape-from-texture algorithm using the spectrogram. In: **Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis**, p. 322-325, 1994.
- 26 GARDING, J. Shape from texture for smooth curved surfaces in perspective projection. Journal of Mathematical Imaging and Vision, Vol. 2, p. 327–350, 1992.
- 27 O'NEILL, B. **Elementary Differential Geometry**. Academic Press, Orlando, Florida, 1966.
- 28 GARDING, J. Shape from texture for smooth curved surfaces. In: European Conference on Computer Vision, p. 630-638, 1992.
- 29 SUPER, B. J.; BOVIK, A. C. Shape from texture using local spectral moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 17, p. 333-343, April 1995
- 30 ROSENHOLTZ, R.; MALIK, J. Computing Local Surface Orientation and Shape from Texture for Curved Surfaces. **International Journal of Computer Vision**, Vol. 23, p. 149-168, 1997.

- 31 RIBEIRO, E.; HANCOCK, E. R. Shape from Periodic Texture Using the Eigenvectors of Local Affine Distortion. **IEEE Transactions on Pattern Analysis and Machine Intelligence**, Vol. 23, no. 12, December 2001.
- 32 CLERC, M.; MALLAT, S. The texture gradient equation for recovering shape from texture. **IEEE Transactions on Pattern Analysis and Machine Intelligence.** Vol. 24, no. 4, p. 536-549, April 2002.
- 33 CLERC, M.; MALLAT, S. Estimating Deformations of Stationary Processes. Technical Report 2000-192, CERMICS, L' Ecole Nationale des Ponts et Chaussões, 2000.
- 34 LOH, A.M.; KOVESI, P. Estimation of surface normal of a curved surface using texture. **Proceedings of the Digital Image Computing Techniques and Applications**, 2003.
- 35 HUYNH, D. **Binary Images**. Disponível em <<u>http://undergraduate.csse.uwa.edu.au/units/233.412/</u>>. Acesso em 20 Jan 2005.
- 36 FORSYTH, D. A. Shape from Texture without Boundaries. **Proceedings of European Conference on Computer Vision**, 2002.
- 37 LOH, A. M.; HARTLEY, R. Shape from non-homogeneous, non-stationary, anisotropic, perspective texture. **Proceedings of the British Machine Vision Conference**, 2005.
- 38 LOH, A. M.; ZISSERMAN, A. Estimating the affine transformation between textures. In Proceedings of the Digital Image Computing: Techniques and Applications Conference, 2005.
- 39 FORSYTH, D. A.; PONCE, J. Computer Vision A Modern Approach, Prentice Hall, 2003.
- 40 GONZALEZ, R.G.; WOODS, R. E. Digital Image Processing. Prentice Hall, 2002.
- 41 SHAPIRO, L. G.; STOCKMAN, G. C. Computer Vision, Prentice Hall, 2001.
- 42 STEVENS, K. A. Slant-Tilt: The Visual Encoding of Surface Orientation. **Biological Cybernetics**, Vol. 46, no. 3, p. 183-195, 1983.
- 43 GOLUB, G.; VAN LOAN, C. Matrix Computations, 3rd ed., Johns Hopkins Press, Baltimore, 1996.
- 44 LOH, A. M.; ZISSERMAN, A. Estimating the affine transformation between textures. In Proceedings of the Digital Image Computing: Techniques and Applications Conference, 2005.
- 45 LOH, A. M.; HARTLEY, R. Shape from non-homogeneous, non-stationary, anisotropic, perspective texture. **Proceedings of the British Machine Vision Conference**, 2005.
- 46 GABOR, D. Theory of Communication. Journal of the Institute of Electrical Engineering., Vol. 93, p. 429-457, 1946.

- 47 DAUGMAN, J. G.. Two dimensional spectral analysis of cortical receptive field profiles. **Vision Research**, Vol. 20, p. 847-856, 1980.
- 48 DAUGMAN, J. G. Uncertainty relation for resolution in space, spatial frequency, and orientation optimised by two-dimensional cortical filters. **Journal of the Optical Society of America**, Vol. 2, p. 1160-1169, 1985.
- 49 BOVIK, A. C.; CLARK, M.; GEISLER, W. S. Multichannel texture analysis using localized spatial filters. **IEEE Transactions Pattern Analysis and Machine Intelligence**, Vol. 12, p. 55-73, 1990.
- 50 MOVELLAN, J. R. **Tutorial on Gabor Filters**, 2002. Disponível em: <<u>http://mplab.ucsd.edu/tutorials/tutorials.html</u>>. Acesso em: 10 Jan. 2005.
- 51 SUPER, B. J.; BOVIK, A. C. Shape-from-texture by wavelet-based measurement of local spectral moments. **IEEE Proceedings of the Conference on Computer Vision and Pattern Recognition**, p. 296-301, 1992.
- 52 HAVLICEK, J. P.; BOVIK, A. C.; MARAGOS, P. Modulation models for image processing and wavelet-based image demodulation. Proceedings of 26th IEEE Asilomar Conference on Signals, Systems and Computers, p. 805-810, 1992.
- 53 HORN, B. K. P. Robot Vision. MIT Press, Cambridge, Massachusetts, 1986.
- 54 MARKS, R. J. Introduction to Shannon Sampling and Interpolation Theory. Springer-Verlag, 1991.
- 55 PRESS, W. H.; FLANNERY, B. P.; TEUKOLSKI, S. A; VETTERLING, W. T. **Numerical Recipes in C**, Cambridge University Press, 1988.
- 56 RUSS, J. C. The Image Processing Handbook, 3 ed. CRC Press, 1998.
- 57 FEITOSA, R. Q. Notas de aula em Visão Computacional Realce no Domínio da Frequência, 2005. Disponível em <<u>http://www.ele.puc-rio.br/~visao/</u>>. Acesso em 20 de Agosto de 2005.
- 58 DAUGMAN, J. Continuous Mathematics, 1999. Disponível em <<u>http://www.cl.cam.ac.uk/Teaching/1999/ContMaths/Notes.pdf</u>>. Acesso em 5 Jun 2005.
- 59 ROUSSEEUW, P. J.; LEROY, A. M. Robust Regression and Outlier Detection, Wiley, 1987.
- 60 SCHAFFALITZKY, F.; ZISSERMAN, A. Viewpoint invariant texture matching and wide baseline stereo. In: International Conference on Computer Vision, Vol. 01, p. 636-643, 2001.
- 61 LOWE, D. G. Distinctive image features from scale-invariant keypoints, **International Journal of Computer Vision**, Vol. 60, p. 91-110, 2004.
- 62 LOWE, D. G. **Demo Software: SIFT Keypoint Detector**. Disponível em <<u>http://www.cs.ubc.ca/~lowe/keypoints/</u>>. Acesso em 10 Jan 2006.
- 63 DUDA, R. O.; HART, P. E.; STORK; D. G. **Pattern Classification**. 2.ed. New York: Wiley-Interscience, 2001.

- 64 KOVESI, P. Surface Normals to Surfaces via Shapelets, **Proceedings Australia-Japan Advanced Workshop on Computer Vision**, Adelaide, 9-11 September 2003.
- 65 KOVESI, P. D. MATLAB and Octave Functions for Computer Vision and Image Processing. School of Computer Science & Software Engineering. Disponível em <<u>http://www.csse.uwa.edu.au/~pk/research/matlabfns/</u>>. Acesso em 28 Jan 2006.
- 66 BRODATZ, P. **Textures: A photographic album for artists and designers**. Dover Publications, New York, 1966.
- 67 GRAEFE, F.; SCHUMACHER, W; FEITOSA, R. Q.; DUARTE, D. M. Filled: video data based fill level detection of agricultural bulk freight. **ICINCO**, p. 439-442, 2005.
- 68 LUCCHESE, L. A Frequency Domain Technique Based on Energy Radial Projections for Robust Estimation of Global 2D Affine Transformations. Computer Vision and Image Understanding, Vol. 81, p. 72-116, Feb. 2001.

Apêndice I Tabelas extras dos experimentos da estimação da transformação afim

variância	theta	-	erro médio	erro máx.	erro mín.	desvio-padrão do erro
0.00001	0°	slant	0,5	4,4	0,1	0,9
		tilt	3,8	51,0	0,1	8,1
0.00001	30°	slant	0,6	4,4	0,1	0,9
		tilt	4,2	56,2	0,1	9,5
0.00001	45°	slant	0,6	4,7	0,1	1,0
0.00001		tilt	4,0	49,7	0,2	8,4
0.00001	600	slant	0,6	4,4	0,1	1,0
		tilt	4,0	52,2	0,1	8,8
0.00001	90°	slant	0,6	5,1	0,1	1,0
		tilt	4,1	52,6	0,1	9,0
0.0001	00	slant	1,3	8,2	0,3	1,7
		tilt	6,8	58,7	0,3	10,9
0.0001	30°	slant	1,6	7,9	0,3	1,8
		tilt	6,3	46,8	0,3	9,9
0.0001	45°	slant	1,4	8,0	0,4	1,8
		tilt	5,8	51,0	0,4	9,4
0.0001	60°	slant	1,3	7,8	0,3	1,7
		tilt	5,9	48,8	0,5	9,2
0.0001	90°	slant	1,3	7,7	0,2	1,8
		tilt	6,2	51,4	0,4	10,0
0.001	0°	slant	3,6	14,4	1,2	3,0
		tilt	8,9	53,6	0,9	10,4
0.001	30°	slant	3,5	13,7	1,3	3,1
		tilt	9,0	45,8	1,2	10,0
0.001	45°	slant	3,9	14,0	1,4	3,1
		tilt	9,9	53,3	1,2	11,3
0.001	60°	slant	4,4	15,3	1,4	3,4
		tilt	10,3	45,6	1,1	10,5
0.001	90°	slant	3,4	13,7	1,1	3,1
		tilt	9,5	49,8	1,3	10,6

Tabela 5 - Erros da decomposição da transformação afim por *SVD* na presença de ruído. Versão completa da Tabela 2.

variância	theta		erro médio	erro máx.	erro mín.	desvio-padrão do erro
0.01	0°	slant	9,1	25,8	3,6	6,1
		tilt	17,6	47,3	3,2	10,7
0.01	30°	slant	11,1	27,8	4,2	6,2
		tilt	15,8	53,3	3,0	10,6
0.01	45°	slant	10,1	25,4	3,9	5,9
0.01		tilt	13,9	48,0	3,6	9,6
0.01	600	slant	10,6	26,8	4,1	6,1
0.01	00	tilt	15,8	49,4	3,3	10,1
0.01	90°	slant	9,3	26,6	3,5	6,3
0.01	50	tilt	15,2	53,0	3,2	10,2
0.1	0°	slant	19,1	41,9	5,2	9,1
0.1		tilt	21,6	48,7	7,8	7,7
0.1	30°	slant	25,8	48,7	9,1	10,6
0.1		tilt	22,6	48,5	9,6	8,1
0.1	45°	slant	19,9	42,4	6,8	10,0
0.1		tilt	23,7	48,3	7,4	8,2
0.1	60°	slant	25,1	49,6	7,2	11,7
0.1		tilt	25,1	51,1	9,3	8,5
0.1	90°	slant	24,1	46,1	9,8	9,8
0.1		tilt	23,1	54,3	10,9	8,4
1	0°	slant	37,4	62,5	24,1	10,1
•		tilt	29,6	54,2	15,6	9,2
1	30°	slant	38,0	59,3	21,3	9,3
··		tilt	30,4	49,0	18,8	6,4
1	45°	slant	39,6	58,4	25,8	8,4
		tilt	30,4	51,5	21,1	6,6
1	60°	slant	35,2	66,0	16,7	12,5
•		tilt	29,7	55,5	13,8	9,1
1	90°	slant	38,1	56,4	27,2	6,7
		tilt	31,5	53,6	25,0	5,8

Tabela 6 – Continuação da Tabela 5.

Imagem	theta		erro médio	erro máx.	erro mín.	desvio-padrão do erro
D20	00	slant	29,6	68,9	0,0	20,4
	0	tilt	38,7	90,0	0,0	22,3
D20	200	slant	30,4	71,1	0,0	21,0
	30°	tilt	34,0	88,4	0,0	25,5
D20 4	450	slant	30,8	70,9	0,0	21,2
	40°	tilt	33,3	89,8	0,0	26,1
Doo	C00	slant	30,4	72,5	0,0	21,0
D20	60°	tilt	33,1	86,9	0,0	24,9
D20	000	slant	29,4	72,0	0,0	20,3
D20	90°	tilt	35,3	90,0	0,0	19,6
D19	00	slant	22,1	72,0	0,0	16,4
DIO	0,	tilt	34,7	81,0	0,0	19,7
D19	200	slant	21,9	72,0	0,0	16,1
DIO	30*	tilt	28,8	89,6	0,1	19,4
D10	450	slant	21,6	72,0	0,0	16,1
010	45°	tilt	25,6	89,7	0,0	19,8
D19	600	slant	22,8	72,6	0,0	16,4
010	00*	tilt	20,3	74,8	0,0	17,3
D10	000	slant	24,5	72,6	0,0	16,8
DIO	90°	tilt	24,5	90,0	0,0	21,2
DOF	00	slant	21,9	66,4	0,0	17,7
D95	0,	tilt	33,2	89,2	0,0	25,6
DOF	200	slant	23,2	66,4	0,0	17,6
D95	30*	tilt	31,8	86,9	0,0	20,2
D05	150	slant	24,5	66,3	0,0	17,0
	40*	tilt	29,1	89,9	0,0	18,0
D05	600	slant	23,6	66,3	0,0	17,8
035	00	tilt	27,0	88,5	0,0	20,3
D05	Q00	slant	23,8	66,3	0,0	17,9
035	90	tilt	27,7	90,0	0,1	20,8
D101	00	slant	25,7	73,0	0,0	20,5
	0	tilt	46,5	89,9	0,0	25,4
D101	30°	slant	27,5	71,2	0,0	20,4
Dioi		tilt	34,9	89,9	0,1	22,0
D101	45°	slant	27,3	77,1	0,0	20,1
		tilt	28,3	89,5	0,0	23,1
D101	60°	slant	27,4	71,4	0,0	20,2
		tilt	31,2	88,5	0,0	22,8
D101	90°	slant	26,0	70,7	0,0	20,0
		tilt	33,8	90,0	0,1	22,6
D103	0°	slant	22,9	66,4	0,0	16,0
		tilt	39,3	89,9	0,0	26,3
D103	30°	slant	23,3	66,7	0,0	15,8
		tilt	32,8	89,8	0,0	19,8
D103	45°	slant	22,9	69,4	0,0	14,7
		tilt	27,4	89,3	0,1	22,9
D103	60°	slant	23,3	70,4	0,0	15,6
		tilt	27,9	88,7	0,1	19,8
D103	90°	slant	23,7	71,0	0,0	15,8
	••	tilt	27,9	90,0	0,0	25,5

Tabela 7 - Erros calculados (em graus) para o método de Ruth Rosenholtz.

Imagem	theta		erro médio	erro máx.	erro mín.	desvio-padrão do erro
D20	00	slant	14,2	50,8	0,0	7,5
	0-	tilt	15,5	87,7	0,0	21,6
D20 3	300	slant	9,7	43,4	0,0	8,0
	50	tilt	17,7	57,9	0,0	14,3
D20	45°	slant	10,0	60,8	0,0	9,7
	-10	tilt	16,7	63,5	0,0	12,6
D20	60°	slant	10,9	62,3	0,0	10,7
		tilt	15,2	75,4	0,0	12,9
D20	90°	slant	11,0	54,5	0,0	9,8
		tilt	14,0	90,0	0,0	15,4
D18	0°	slant	17,7	66,3	0,0	15,6
		tilt	19,5	75,5	0,0	15,4
D18	30°	slant	19,0	66,3	0,0	15,8
		tilt	14,0	84,4	0,0	21,4
D18	45°	slant	18,8	66,3	0,0	15,3
		tilt	17,8	/1,1	0,1	20,9
D18	60°	SIANT		00,3 74.4	0,0	14,8
		liit	23,2	74,4	0,0	20,0
D18	90°	siarit tilt	20.0	00,3	0,0	14,4
		slant	20,0	90,0	0,0	17,0
D95	0°	tilt	23.0	89.7	0,0	18.5
		slant	10.1	38.8	0,0	7.8
D95	30°	tilt	17.6	74.0	0,0	18.5
	0	slant	9.0	28.0	0.0	6.7
D95	45°	tilt	13.6	69.7	0.0	16.9
Doc		slant	7.8	28.0	0.0	6.1
D95	60°	tilt	13,4	60,0	0,2	12,5
DOF	000	slant	12,2	35,7	0,0	7,0
D95	90°	tilt	10,4	90,0	0,0	16,0
D101	0°	slant	8,3	32,8	0,0	7,2
DIUI		tilt	5,8	89,4	0,0	10,5
D101	30°	slant	8,1	29,2	0,0	6,8
DIOT		tilt	9,6	42,8	0,0	9,5
D101	45°	slant	8,5	27,4	0,0	7,0
		tilt	11,7	52,6	0,0	12,7
D101	60°	slant	9,0	28,6	0,0	6,7
		tilt	13,6	67,5	0,0	16,8
D101	90°	slant	11,2	30,6	0,0	6,7
		tilt	16,8	90,0	0,0	22,7
D103	0°	slant	14,0	54,7	0,0	12,1
		tilt	25,1	85,7	0,0	18,3
D103	30°	siant	10,6	65,7	0,0	10,7
D103	45°		14,7	64,9	0,0	13,0
		siant	9,1	49,2	0,0	10,2
		elant	10,6	54.0	0,0	10.6
D103	60°	tilt	3,2	61.2	0,0	11.2
		slant	16.6	62.6	0,0	13.3
D103	90°	tilt	20.8	90.0	0,0	24.1
			20,0	00,0	0,0	2 1 , 1

Tabela 8 - Erros calculados (em graus) para o método de Angeline Loh.

Anexo I Derivação das equações de Super e Bovik

Neste anexo são apresentadas as derivações para obtermos a equação (22) do método de Super e Bovik apresentado no Capítulo 4. As derivações aqui encontradas são oriundas do artigo e apresentadas para uma melhor compreensão do texto.

Através das equações dos momentos de segunda ordem e de um modelo de projeção ortográfico alcança-se a equação que relaciona os momentos de segunda ordem na superfície (no espaço objeto, sem deformação) e no plano imagem.

O primeiro passo para obter a eq. (22) é definir o modelo de projeção como uma transformação afim:

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos \sigma \cos \tau & -\sin \tau \\ \cos \sigma \sin \tau & \cos \tau \end{bmatrix} \begin{bmatrix} x_s \\ y_s \end{bmatrix}$$
(38)

onde x e y são as coordenadas na imagem e x_s e y_s na superfície, σ é o *slant* e τ é o *tilt*. Essa notação com o índice *s* será empregada em todas as fórmulas aqui apresentadas.

Estendendo esta projeção para o domínio da freqüência, onde temos a inversa transposta, como na eq. (26), temos:

$$\begin{bmatrix} u_s \\ v_s \end{bmatrix} = \begin{bmatrix} \cos\sigma\cos\tau & \cos\sigma\sin\tau \\ -\sin\tau & \cos\sigma \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$
(39)

Que nos resulta:

$$u_{s} = u\cos\sigma\cos\tau + v\cos\sigma\sin\tau$$

$$v_{s} = -u\sin\tau + v\cos\sigma$$
(40)

A projeção da convolução da imagem com um filtro, $A_i(x,y)$ na eq. (16), é particularmente simples neste trabalho pois são empregados filtros com

gaussianas isotrópicas, o que faz com que a projeção sofra apenas efeito de compressão e não de rotação, resultando:

$$A_{si}(x_s, y_s) = \frac{1}{\cos\sigma} A_i(x, y)$$
(41)

Reescrevendo a eq. (17) para a superfície, incluindo a normalização para efeitos de contraste e iluminação, dividindo por $\sum_i A_i^2(x, y)$ temos:

$$a_{s}(x_{s}, y_{s}) = \sum_{i} U_{si}^{2} A_{si}^{2}(x_{s}, y_{s}) / \sum_{i} A_{si}^{2}(x_{s}, y_{s})$$

$$b_{s}(x_{s}, y_{s}) = 2\sum_{i} U_{si} V_{si} A_{si}^{2}(x_{s}, y_{s}) / \sum_{i} A_{si}^{2}(x_{s}, y_{s})$$

$$c_{s}(x_{s}, y_{s}) = \sum_{i} V_{si}^{2} A_{si}^{2}(x_{s}, y_{s}) / \sum_{i} A_{si}^{2}(x_{s}, y_{s})$$
(42)

Realizando uma troca de variáveis, fazendo U_{si} e V_{si} iguais a u_s e v_s da eq.(40), e substituindo A_{si} por A_i da eq. (41), temos:

$$a_{s}(x_{s}, y_{s}) = \sum_{i} \left(u \cos \sigma \cos \tau + v \cos \sigma \sin \tau \right)^{2} (\cos \sigma)^{-2} A_{i}^{2}(x, y) / \sum_{i} (\cos \sigma)^{-2} A_{i}^{2}(x, y)$$
$$a_{s}(x_{s}, y_{s}) = \sum_{i} \left(\frac{u^{2} \cos^{2} \sigma \cos^{2} \tau + 2uv \cos^{2} \sigma \cos \tau \sin \tau + 2uv \cos^{2} \sigma \cos \tau \sin \tau + 2uv \cos^{2} \sigma \cos^{2} \tau + 2uv \cos^{2} \sigma \sin^{2} \tau + 2uv \cos^{2} \sigma \sin^{2} \tau \right) (\cos \sigma)^{-2} A_{i}^{2}(x, y) / \sum_{i} (\cos \sigma)^{-2} A_{i}^{2}(x, y)$$

$$a_{s}(x_{s}, y_{s}) = \cos^{2} \sigma \cos^{2} \tau \left[\sum_{i} u^{2} (\cos \sigma)^{-2} A_{i}^{2}(x, y) / \sum_{i} (\cos \sigma)^{-2} A_{i}^{2}(x, y) \right] + \cos^{2} \sigma \cos \tau \sin \tau \left[\sum_{i} 2uv(\cos \sigma)^{-2} A_{i}^{2}(x, y) / \sum_{i} (\cos \sigma)^{-2} A_{i}^{2}(x, y) \right] + \cos^{2} \sigma \sin^{2} \tau \left[\sum_{i} v^{2} (\cos \sigma)^{-2} A_{i}^{2}(x, y) / \sum_{i} (\cos \sigma)^{-2} A_{i}^{2}(x, y) \right]$$

 $a_s(x_s, y_s) = a(x, y)\cos^2 \sigma \cos^2 \tau + b(x, y)\cos^2 \sigma \cos \tau \sin \tau + c(x, y)\cos^2 \sigma \sin^2 \tau$

De forma semelhante são calculados b_s e c_s , que resultam na eq. (22).